Scientific Research Activities by WeiJin Tang (湯偉晉 在進行的 科學性研究活動); By WeiJin Tang (湯偉晉); Email: WeiJin.Tang@gmail.com; Cell phone: 0958-227-243 (Taiwan)
2024年8月10日 星期六
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis; PY2020; Wayne State University;_WJD_2024-0810_IR95_IR96_
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis; PY2020; Wayne State University;_WJD_2024-0810_IR95_IR96_V001R01_
##
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis; PY2020; Wayne State University;_WJD_2024-0810_IR95_IR96_V001R01_
##
Maturation of cytosolic Iron-sulfur proteins requires glutathione
細胞質液 裡面的 鐵硫蛋白 的成熟需要 穀胱甘肽
Maturation of cytosolic Iron-sulfur proteins requires glutathione (細胞質液 裡面的 鐵硫蛋白 的成熟需要 穀胱甘肽)
細胞質液 裡面的 鐵硫蛋白 的成熟需要 穀胱甘肽 (Maturation of cytosolic Iron-sulfur proteins requires glutathione)
--- - - --- - - ---
2024-08-10
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis
Source or References (資訊來源或是參考的資訊):
https://pubmed.ncbi.nlm.nih.gov/31672571/
Info cited on 2024-08-10-WD6 (資訊引用於 中華民國113年西元2024年8月10日) by 湯偉晉 (WeiJin Tang)
#
- - - - - - - -
Biochim Biophys Acta Mol Cell Biol Lipids
. 2020 Feb;1865(2):158542. doi: 10.1016/j.bbalip.2019.158542. Epub 2019 Oct 28.
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis
Vinay A Patil 1, Yiran Li 1, Jiajia Ji 1, Miriam L Greenberg 2
Affiliations collapse
Affiliations
1Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
2Department of Biological Sciences, Wayne State University, Detroit, MI, USA. Electronic address: mgreenberg@wayne.edu.
PMID: 31672571 PMCID: PMC6980711 DOI: 10.1016/j.bbalip.2019.158542
Abstract
Previous studies demonstrated that loss of CL in the yeast mutant crd1Δ leads to perturbation of mitochondrial iron‑sulfur (FeS) cluster biogenesis, resulting in decreased activity of mitochondrial and cytosolic Fe-S-requiring enzymes, including aconitase and sulfite reductase. In the current study, we show that crd1Δ cells exhibit decreased levels of glutamate and cysteine and are deficient in the essential antioxidant, glutathione, a tripeptide of glutamate, cysteine, and glycine. Glutathione is the most abundant non-protein thiol essential for maintaining intracellular redox potential in almost all eukaryotes, including yeast. Consistent with glutathione deficiency, the growth defect of crd1Δ cells at elevated temperature was rescued by supplementation of glutathione or glutamate and cysteine. Sensitivity to the oxidants iron (FeSO4) and hydrogen peroxide (H2O2), was rescued by supplementation of glutathione. The decreased intracellular glutathione concentration in crd1Δ was restored by supplementation of glutamate and cysteine, but not by overexpressing YAP1, an activator of expression of glutathione biosynthetic enzymes. These findings show for the first time that CL plays a critical role in regulating intracellular glutathione metabolism.
Keywords: Barth syndrome; Cardiolipin; Fe-S cluster; Glutathione; Mitochondria; Reactive oxygen species (ROS).
Copyright © 2019 Elsevier B.V. All rights reserved.
PubMed Disclaimer
Conflict of interest statement
Declaration of competing interest
This article was prepared while Vinay A. Patil was employed at Wayne State University. The opinions expressed in this article are the author’s own and do not reflect the view of the Food and Drug Administration, the Department of Health and Human Services, or the United States Government.
Similar articles
Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis.
Patil VA, Fox JL, Gohil VM, Winge DR, Greenberg ML.
J Biol Chem. 2013 Jan 18;288(3):1696-705. doi: 10.1074/jbc.M112.428938. Epub 2012 Nov 28.
PMID: 23192348 Free PMC article.
Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function.
Raja V, Salsaa M, Joshi AS, Li Y, van Roermund CWT, Saadat N, Lazcano P, Schmidtke M, Hüttemann M, Gupta SV, Wanders RJA, Greenberg ML.
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 May;1864(5):654-661. doi: 10.1016/j.bbalip.2019.02.001. Epub 2019 Feb 5.
PMID: 30731133 Free PMC article.
Loss of Cardiolipin Leads to Perturbation of Acetyl-CoA Synthesis.
Raja V, Joshi AS, Li G, Maddipati KR, Greenberg ML.
J Biol Chem. 2017 Jan 20;292(3):1092-1102. doi: 10.1074/jbc.M116.753624. Epub 2016 Dec 9.
PMID: 27941023 Free PMC article.
Cardiolipin at the heart of stress response across kingdoms.
de Paepe R, Lemaire SD, Danon A.
Plant Signal Behav. 2014;9(9):e29228. doi: 10.4161/psb.29228.
PMID: 25763690 Free PMC article. Review.
New insights into the regulation of cardiolipin biosynthesis in yeast: implications for Barth syndrome.
Li G, Chen S, Thompson MN, Greenberg ML.
Biochim Biophys Acta. 2007 Mar;1771(3):432-41. doi: 10.1016/j.bbalip.2006.06.007. Epub 2006 Jul 8.
PMID: 16904369 Review.
See all similar articles
Cited by
Analysis of temporal metabolic rewiring for human respiratory syncytial virus infection by integrating metabolomics and proteomics.
Lu Y, Xu S, Sun H, Shan J, Shen C, Ji J, Lin L, Xu J, Peng L, Dai C, Xie T.
Metabolomics. 2023 Mar 29;19(4):30. doi: 10.1007/s11306-023-01991-2.
PMID: 36991292 Free PMC article.
Cardiolipin function in the yeast S. cerevisiae and the lessons learned for Barth syndrome.
Ji J, Greenberg ML.
J Inherit Metab Dis. 2022 Jan;45(1):60-71. doi: 10.1002/jimd.12447. Epub 2021 Oct 19.
PMID: 34626131 Free PMC article. Review.
References
Jiang F, Rizavi HS, Greenberg ML, Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or non-fermentable carbon sources, Mol. Microbiol 26 (1997) 481–491. - PubMed
Gohil VM, Thompson MN, Greenberg ML, Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae, J. Biol. Chem 280 (2005) 35410–35416. - PubMed
Barth PG, Wanders RJ, Vreken P, Janssen EA, Lam J, Baas F, X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060), J. Inherit. Metab. Dis 22 (1999) 555–567. - PubMed
Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D, A. novel X-linked gene G4.5. is responsible for Barth syndrome, Nat. Genet 12 (1996) 385–389. - PubMed
Clarke SL, Bowron A, Gonzalez IL, Groves SJ, Newbury-Ecob R, Clayton N, Martin RP, Tsai-Goodman B, Garratt V, Ashworth M, Bowen VM, McCurdy KR, Damin MK, Spencer CT, Toth MJ, Kelley RI, Steward CG, Barth syndrome, Orphanet J Rare Dis 8 (2013) 23. - PMC - PubMed
Sandlers Y, Mercier K, Pathmasiri W, Carlson J, McRitchie S, Sumner S, Vernon HJ, Metabolomics reveals new mechanisms for pathogenesis in Barth syndrome and introduces novel roles for cardiolipin in cellular function, PLoS One 11 (2016) e0151802. - PMC - PubMed
Koshkin V, Greenberg ML, Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria, Biochem. J 347 (Pt 3) (2000) 687–691. - PMC - PubMed
Zhang M, Mileykovskaya E, Dowhan W, Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane, J. Biol. Chem 277 (2002) 43553–43556. - PubMed
Pfeiffsser K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schagger H, Cardiolipin stabilizes respiratory chain supercomplexes, J. Biol. Chem 278 (2003) 52873–52880. - PubMed
Raja V, Joshi AS, Li G, Maddipati KR, Greenberg ML, Loss of cardiolipin leads to perturbation of acetyl-CoA synthesis, J. Biol. Chem 292 (2017) 1092–1102. - PMC - PubMed
Patil VA, Fox JL, Gohil VM, Winge DR, Greenberg ML, Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis, J. Biol. Chem 288 (2013) 1696–1705. - PMC - PubMed
Hill JE, Myers AM, Koerner TJ, Tzagoloff A, Yeast/E. coli shuttle vectors with multiple unique restriction sites, Yeast 2 (1986) 163–167. - PubMed
Zhong Q, Gohil VM, Ma L, Greenberg ML, Absence of cardiolipin results in temperature sensitivity, respiratory defects, and mitochondrial DNA instability independent of pet56, J. Biol. Chem 279 (2004) 32294–32300. - PubMed
Kaplan J, McVey Ward D, Crisp RJ, Philpott CC, Iron-dependent metabolic remodeling in S. cerevisiae, Biochim. Biophys. Acta 1763 (2006) 646–651. - PubMed
Lill R, Muhlenhoff U, Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases, Annu. Rev. Biochem 77 (2008) 669–700. - PubMed
Cupp JR, McAlister-Henn L, NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae, J. Biol. Chem 266 (1991) 22199–22205. - PubMed
Cupp JR, McAlister-Henn L, Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae, J. Biol. Chem 267 (1992) 16417–16423. - PubMed
Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS, Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1, J Biol Chem 269 (1994) 32592–32597. - PubMed
DeLuna A, Avendano A, Riego L, Gonzalez A, NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles, J. Biol. Chem 276 (2001) 43775–43783. - PubMed
Hansen J, Cherest H, Kielland-Brandt MC, Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH, J. Bacteriol 176 (1994) 6050–6058. - PMC - PubMed
Masselot M, De Robichon-Szulmajster H, Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants, Mol. Gen. Genet 139 (1975) 121–132. - PubMed
Masselot M, Surdin-Kerjan Y, Methionine biosynthesis in Saccharomyces cerevisiae. II. Gene-enzyme relationships in the sulfate assimilation pathway, Mol. Gen. Genet 154 (1977) 23–30. - PubMed
Ogur M, Coker L, Ogur S, Glutamate auxotrophs in Saccharomyces 1. I. The biochemical lesion in the glt-1 mutants-2, Biochem Biophys Res Commun 14 (1964) 193–197. - PubMed
Thomas D, Surdin-Kerjan Y, Metabolism of sulfur amino acids in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev 61 (1997) 503–532. - PMC - PubMed
Wen S, Zhang T, Tan T, Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae, Enzym. Microb. Technol 35 (2004) 501–507.
Cha JY, Park JC, Jeon BS, Lee YC, Cho YS, Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8, J. Microbiol 42 (2004) 51–55. - PubMed
Suzuki T, Yokoyama A, Tsuji T, Ikeshima E, Nakashima K, Ikushima S, Kobayashi C, Yoshida S, Identification and characterization of genes involved in glutathione production in yeast, J. Biosci. Bioeng 112 (2011) 107–113. - PubMed
Inoue Y, Sugiyama K, Izawa S, Kimura A, Molecular identification of glutathione synthetase (GSH2) gene from Saccharomyces cerevisiae, Biochim. Biophys. Acta 1395 (1998) 315–320. - PubMed
Ohtake Y, Yabuuchi S, Molecular cloning of the gamma-glutamylcysteine synthetase gene of Saccharomyces cerevisiae, Yeast 7 (1991) 953–961. - PubMed
Grant CM, MacIver FH, Dawes IW, Glutathione is an essential metabolite required for resistance to oxidative stress in the yeastSaccharomyces cerevisiae, Curr. Genet 29 (1996) 511–515. - PubMed
Jamieson DJ, Oxidative stress responses of the yeast Saccharomyces cerevisiae, Yeast 14 (1998) 1511–1527. - PubMed
Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB, Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast, J. Biol. Chem 274 (1999) 16040–16046. - PubMed
Sugiyama K, Izawa S, Inoue Y, The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae, J. Biol. Chem 275 (2000) 15535–15540. - PubMed
Wheeler GL, Trotter EW, Dawes IW, Grant CM, Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors, J. Biol. Chem 278 (2003) 49920–49928. - PubMed
Wu AL, Moye-Rowley WS, GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation, Mol. Cell. Biol 14 (1994) 5832–5839. - PMC - PubMed
Kumar C, Igbaria A, D’Autreaux B, Planson AG, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB, Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control, EMBO J 30 (2011) 2044–2056. - PMC - PubMed
Meister A, Glutathione metabolism and its selective modification, J. Biol. Chem 263 (1988) 17205–17208. - PubMed
Penninckx MJ, An overview on glutathione in Saccharomyces versus non-conventional yeasts, FEMS Yeast Res 2 (2002) 295–305. - PubMed
Jamieson DJJY, Oxidative Stress Responses of the Yeast Saccharomyces cerevisiae, 14 (1998), pp. 1511–1527. - PubMed
Pierik AJ, Netz DJ, Lill R, Analysis of iron-sulfur protein maturation in eukaryotes, Nat. Protoc 4 (2009) 753–766. - PubMed
Alfafara C, Miura K, Shimizu H, Shioya S, Suga K.-i., Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol 37 (1992) 141–146.
Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G, Maturation of cytosolic Iron-sulfur proteins requires glutathione, J. Biol. Chem 277 (2002) 26944–26949. - PubMed
Lee JC, Straffon MJ, Jang TY, Higgins VJ, Grant CM, Dawes IW, The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain, FEMS Yeast Res 1 (2001) 57–65. - PubMed
Chen S, He Q, Greenberg ML, Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth, Mol. Microbiol 68 (2008) 1061–1072. - PMC - PubMed
Moreno-Cermeno A, Obis E, Belli G, Cabiscol E, Ros J, Tamarit J, Frataxin depletion in yeast triggers up-regulation of iron transport systems before affecting iron-sulfur enzyme activities, J. Biol. Chem 285 (2010) 41653–41664. - PMC - PubMed
Vasquez-Vivar J, Kalyanaraman B, Kennedy MC, Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation, The Journal of biological chemistry 275 (2000) 14064–14069. - PubMed
Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML, Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae, J. Biol. Chem 287 (2012) 17589–17597. - PMC - PubMed
Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M, Guan XL, Mooga VP, Stroud DA, Kulkarni G, Wenk MR, Rehling P, Meisinger C, Ryan MT, Wiedemann N, Greenberg ML, Pfanner N, Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome, Curr. Biol 19 (2009) 2133–2139. - PMC - PubMed
Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenberg ML, Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function, J. Biol. Chem 275 (2000) 22387–22394. - PubMed
Johnston J, Kelley RI, Feigenbaum A, Cox GF, Iyer GS, Funanage VL, Proujansky R, Mutation characterization and genotype-phenotype correlation in Barth syndrome, Am. J. Hum. Genet 61 (1997) 1053–1058. - PMC - PubMed
Raja V, Salsaa M, Joshi AS, Li Y, van Roermund CWT, Saadat N, Lazcano P, Schmidtke M, Huttemann M, Gupta SV, Wanders RJA, Greenberg ML, Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864 (2019) 654–661. - PMC - PubMed
- - - - -- -- - -
--- --- - - --- ---
Bioimaging of glutathione variation for early diagnosis of hepatocellular carcinoma using a liver-targeting ratiometric near-infrared fluorescent probe; PY2023; PR China (中華人民共和國);_WJD_2024-0811_IR94 IR95_
Bioimaging of glutathione variation for early diagnosis of hepatocellular carcinoma using a liver-targeting ratiometric near-infrared fluorescent probe; PY2023; PR China (中華人民共和國);_WJD_2024-0811_IR94 IR95_V001R01_
--- - - --- - - ---
2024-08-11
Bioimaging of glutathione variation for early diagnosis of hepatocellular carcinoma using a liver-targeting ratiometric near-infrared fluorescent probe
Source or References (資訊來源或是參考的資訊):
https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb00893b
Info cited on 2024-08-11-WD7 (資訊引用於 中華民國113年西元2024年8月11日) by 湯偉晉 (WeiJin Tang)
#
- - - - - - - -
Issue 28, 2023
Journal of Materials Chemistry B
Bioimaging of glutathione variation for early diagnosis of hepatocellular carcinoma using a liver-targeting ratiometric near-infrared fluorescent probe
Bioimaging of glutathione variation for early diagnosis of hepatocellular carcinoma using a liver-targeting ratiometric near-infrared fluorescent probe
Bioimaging of glutathione variation for early diagnosis of hepatocellular carcinoma using a liver-targeting ratiometric near-infrared fluorescent probe
Xiaoyue Han,‡a Yanlong Xing,‡*bc Xinyu Song,d Kun Dou,bc Fabiao Yu ORCID logo *bc and Lingxin Chen ORCID logo *a
Abstract
Reliable biomarkers are crucial for early diagnosis of diseases and precise therapy. Biological thiols (represented by glutathione, GSH) play vital roles in the antioxidant defense system for maintaining intracellular redox homeostasis in organisms. However, the aberrant variation in the cellular concentration of GSH correlates with diverse diseases including cancer. Here, a ratiometric near-infrared fluorescent probe CyO-Disu is constructed for the specific sensing of GSH variation in live cells and mice models of hepatic carcinoma (HCC). CyO-Disu features three key elements, a response moiety of bis(2-hydroxyethyl) disulfide, a near-infrared fluorescence signal transducer of heptamethine ketone cyanine, and a targeting moiety of D-galactose. By virtue of its liver-targeting capability, CyO-Disu was utilized for evaluating GSH fluctuations in primary and metastatic hepatoma living cells. To evaluate the efficacy of CyO-Disuin vivo, orthotopic HCC and pulmonary metastatic hepatoma mice models were employed for GSH imaging using two-dimensional and three-dimensional fluorescence molecular tomographic imaging systems. The bioimaging results offered direct evidence that GSH displayed varied concentrations during the progression of HCC. Therefore, the as-synthesized probe CyO-Disu could serve as a potential powerful tool for the early diagnosis and precise treatment of HCC using GSH as a reliable biomarker.
- - - - -- -- - -
--- --- - - --- ---
2024年6月23日 星期日
Effect of oxidized and reduced glutathione in liver preservation PY1990 IR95 肝臟的保存
Effect of oxidized and reduced glutathione in liver preservation PY1990 IR95 肝臟的保存
資訊來源:
https://pubmed.ncbi.nlm.nih.gov/2256168/
##
December 1990
Effect of oxidized and reduced glutathione in liver preservation
K Boudjema 1, T M Van Gulik, S L Lindell, P S Vreugdenhil, J H Southard, F O Belzer
Affiliation
Department of Surgery, University of Wisconsin, Madison 53792.
PMID: 2256168
Abstract
Glutathione spontaneously oxidizes in the UW solution for organ preservation and reduced glutathione (GSH) is converted to oxidized (GSSG) glutathione. To determine the effects of the oxidized or reduced forms of glutathione on liver preservation dog livers were preserved for 24 and 48 hr with the UW solution containing either GSH or GSSG. After 24 hr of preservation the form of glutathione did not affect survival or the postoperative course of the animals. All animals survived (three per group) with near-normal liver functions by the third to fifth postoperative day. When preservation was extended to 48 hr survival was 100% (6/6) with GSH and 29% (2/7) with GSSG. The dogs that died developed primary nonfunction of the liver. This study shows that GSH is an important component of the UW solution for 48-hr preservation of the dog liver. The presence of GSSG does not prevent successful 24-hr preservation of the liver, which has been confirmed in clinical studies. However, for 48-hr preservation GSH is required and GSSG is not suitable.
##
Effect of oxidized and reduced glutathione in liver preservation PY1990 IR95 肝臟的保存
Effect of oxidized and reduced glutathione in liver preservation PY1990 IR95 肝臟的保存
##
2024年5月30日 星期四
Plasma Glutathione Levels Decreased with Cognitive Decline among People with Mild Cognitive Impairment (MCI): A Two-Year Prospective Study PY2021 IR95 IR96 Taiwan
--- - - --- - - ---
2024-05-31
- - - - - - - -
Plasma Glutathione
Levels Decreased with Cognitive Decline among People with Mild Cognitive
Impairment (MCI): A Two-Year Prospective Study PY2021 IR95 IR96 Taiwan
Plasma Glutathione Levels Decreased with Cognitive Decline among People with
Mild Cognitive Impairment (MCI): A Two-Year Prospective Study PY2021 IR95 IR96 Taiwan
在 輕度認知障礙的患者 中,血漿裡面的 穀胱甘肽 之水平 隨著 認知能力 的下降而逐漸減少:一個為期兩年的前瞻性研究計畫
資訊來源 2024-0522:
https://pubmed.ncbi.nlm.nih.gov/34829710/
#湯偉晉挑選的醫學論文
##
Antioxidants (Basel)
2021 Nov 19;10(11):1839. doi: 10.3390/antiox10111839.
Plasma Glutathione Levels Decreased with Cognitive Decline among People with
Mild Cognitive Impairment (MCI): A Two-Year Prospective Study
Chieh-Hsin Lin 1 2 3, Hsien-Yuan Lane 3 4 5
Affiliations collapse
Affiliations
1
Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung
University College of Medicine, Kaohsiung 83301, Taiwan. 長庚大學醫學院高雄長庚醫院精神科,台灣高雄
2
School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan 長庚大學醫學院, 台灣 桃園
3
Graduate Institute of Biomedical Sciences, China Medical University, Taichung
40402, Taiwan. 中國醫藥大學,台中
4
Department of Psychiatry & Brain Disease Research Center, China Medical University
Hospital, Taichung 40402, Taiwan.
5
Department of Psychology, College of Medical and Health Sciences, Asia
University, Taichung 41354, Taiwan.
PMID: 34829710
PMCID: PMC8615204
DOI: 10.3390/antiox10111839
Abstract
Glutathione (GSH) is a
major endogenous antioxidant. Several studies have shown GSH redox
imbalance and altered GSH levels in Alzheimer's disease (AD) patients. Early detection is crucial for
the outcome of AD. However,
whether GSH can serve as a biomarker during the very early-phase of AD, such as
mild cognitive
impairment (MCI),
remains unknown. The current prospective study aimed to examine the
longitudinal change in plasma GSH concentration and its influence on cognitive decline in MCI.
Overall, 49 patients with MCI and 16 healthy individuals were recruited. Plasma
GSH levels and cognitive function, measured by the Mini-Mental Status
Examination (MMSE) and Alzheimer's disease assessment scale-cognitive subscale
(ADAS-cog), were monitored every 6 months. We employed multiple regressions to examine the role of
GSH level in cognitive decline in the 2 years period. The MCI patients showed
significant decline in plasma GSH levels and cognitive function from baseline
to endpoint (month 24). In comparison, the healthy individuals' GSH concentration
and cognitive function did not change significantly. Further, both GSH level at baseline
and GSH level change from baseline to endpoint significantly influenced
cognitive decline among the MCI patients. To our knowledge, this is the first study to demonstrate
that both plasma GSH levels and cognitive function declined 2 years later among
the MCI patients in a prospective manner. If replicated by future studies,
blood GSH concentration may be regarded as a biomarker for monitoring cognitive
change in MCI.
Begin_電腦自動翻譯的內容_Y2024M05D31H03M27Rn3488_
(請注意:電腦自動翻譯的內容,可能會夾雜一些錯誤!)
穀胱甘肽 (GSH) 是一種主要的內源性抗氧化劑。多項研究表明,阿茲海默症 (AD) 患者存在 GSH 氧化還原失衡和 GSH 水平改變。早期發現對於 AD 的結果至關重要。然而,GSH 是否可以作為 AD 早期階段(例如輕度認知障礙(MCI))的生物標記仍不清楚。目前的前瞻性研究旨在探討血漿 GSH 濃度的縱向變化及其對 MCI 認知能力下降的影響。總體而言,招募了 49 名 MCI 患者和 16 名健康個體。每 6 個月監測血漿 GSH 水平和認知功能,並透過簡易精神狀態檢查 (MMSE) 和阿茲海默症評估量表-認知分量表 (ADAS-cog) 進行測量。我們採用多元迴歸來檢驗 GSH 水準在兩年內認知能力下降中的作用。 MCI 患者的血漿 GSH 水平和認知功能從基線到終點(第 24 個月)顯著下降。相較之下,健康個體的GSH濃度和認知功能則沒有顯著變化。此外,基線時的 GSH 水平以及從基線到終點的 GSH 水平變化均顯著影響 MCI 患者的認知能力下降。據我們所知,這是第一個前瞻性地證明 MCI 患者血漿 GSH 水平和認知功能在 2 年後下降的研究。如果未來的研究能夠重複,血液 GSH 濃度可能被視為監測 MCI 認知變化的生物標記。
End_電腦自動翻譯的內容_Y2024M05D31H03M27Rn3488_
Keywords: Alzheimer’s disease (AD); biomarker; cognitive function; glutathione
(GSH); mild cognitive impairment (MCI).
PubMed Disclaimer
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in
the writing of the manuscript, or in the decision to publish the results.
Similar articles
Blood D-Amino Acid Oxidase Levels Increased With Cognitive Decline Among People
With Mild Cognitive Impairment: A Two-Year Prospective Study.
Lin CH, Lane HY.
Int J Neuropsychopharmacol. 2022 Aug 16;25(8):660-665. doi:
10.1093/ijnp/pyac027.
PMID: 35430632 Free PMC article.
Screening for Cognitive Impairment in Older Adults: An Evidence Update for the
U.S. Preventive Services Task Force [Internet].
Lin JS, O'Connor E, Rossom RC, Perdue LA, Burda BU, Thompson M, Eckstrom E.
Rockville (MD): Agency for Healthcare Research and Quality (US); 2013 Nov.
Report No.: 14-05198-EF-1.
PMID: 24354019 Free Books & Documents. Review.
Alzheimer's Disease Assessment Scale-Cognitive subscale variants in mild
cognitive impairment and mild Alzheimer's disease: change over time and the
effect of enrichment strategies.
Podhorna J, Krahnke T, Shear M, Harrison JE; Alzheimer’s Disease Neuroimaging
Initiative.
Alzheimers Res Ther. 2016 Feb 12;8:8. doi: 10.1186/s13195-016-0170-5.
PMID: 26868820 Free PMC article.
Validation study of the Alzheimer's disease assessment scale-cognitive subscale
(ADAS-Cog) for the Portuguese patients with mild cognitive impairment and
Alzheimer's disease.
Nogueira J, Freitas S, Duro D, Almeida J, Santana I.
Clin Neuropsychol. 2018 Jan-Dec;32(sup1):46-59. doi:
10.1080/13854046.2018.1454511. Epub 2018 Mar 23.
PMID: 29566598
Vitamin E for Alzheimer's dementia and mild cognitive impairment.
Farina N, Llewellyn D, Isaac MGEKN, Tabet N.
Cochrane Database Syst Rev. 2017 Apr 18;4(4):CD002854. doi:
10.1002/14651858.CD002854.pub5.
PMID: 28418065 Free PMC article. Review.
See all similar articles
Cited by
Blood Biomarkers in Alzheimer's Disease.
Mandal PK, Maroon JC, Garg A, Arora NK, Bansal R, Kaushik A, Samkaria A,
Kumaran G, Arora Y.
ACS Chem Neurosci. 2023 Nov 15;14(22):3975-3978. doi:
10.1021/acschemneuro.3c00641. Epub 2023 Oct 25.
PMID: 37878665 Free PMC article.
Differential Impacts of Endogenous Antioxidants on Clinical Symptoms and
Cognitive Function in Acute and Chronic Schizophrenia Patients.
Lin CH, Li TM, Huang YJ, Chen SJ, Lane HY.
Int J Neuropsychopharmacol. 2023 Aug 29;26(8):576-583. doi:
10.1093/ijnp/pyad040.
PMID: 37422918 Free PMC article.
Precious but convenient means of prevention and treatment: physiological
molecular mechanisms of interaction between exercise and motor factors and
Alzheimer's disease.
Hao Z, Liu K, Zhou L, Chen P.
Front Physiol. 2023 Jun 8;14:1193031. doi: 10.3389/fphys.2023.1193031.
eCollection 2023.
PMID: 37362440 Free PMC article. Review.
Crosstalk between Oxidative Stress and Aging in Neurodegeneration Disorders.
Abdelhamid RF, Nagano S.
Cells. 2023 Feb 27;12(5):753. doi: 10.3390/cells12050753.
PMID: 36899889 Free PMC article. Review.
Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis
and Therapy.
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo
S, Pascale A.
Antioxidants (Basel). 2023 Jan 12;12(1):180. doi: 10.3390/antiox12010180.
PMID: 36671042 Free PMC article. Review.
See all "Cited by" articles
References
Hinton L., Nguyen H., Nguyen H.T., Harvey D.J., Nichols L., Martindale-Adams
J., Nguyen B.T., Nguyen A.N., Nguyen C.H., Nguyen T.T.H., et al. Advancing
family dementia caregiver interventions in low- and middle-income countries: A
pilot cluster randomized controlled trial of Resources for Advancing
Alzheimer’s Caregiver Health in Vietnam (REACH VN) Alzheimer’s Dement. Transl.
Res. Clin. Interv. 2020;6:e12063. doi: 10.1002/trc2.12063. - DOI - PMC -PubMed
Schrag M., Mueller C., Zabel M., Crofton A., Kirsch W., Ghribi O., Squitti R.,
Perry G. Oxidative stress in blood in Alzheimer’s disease and mild cognitive
impairment: A meta-analysis. Neurobiol. Dis. 2013;59:100–110. doi:
10.1016/j.nbd.2013.07.005. - DOI - PubMed
Zarrouk A., Hammouda S., Ghzaiel I., Hammami S., Khamlaoui W., Ahmed S.H.,
Lizard G., Hammami M. Association Between Oxidative Stress and Altered
Cholesterol Metabolism in Alzheimer’s Disease Patients. Curr. Alzheimer Res.
2021;17:823–834. doi: 10.2174/1567205017666201203123046. - DOI - PubMed
Cheng Y.-J., Lin C.-H., Lane H.-Y. Involvement of Cholinergic, Adrenergic, and
Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer’s
Disease. Int. J. Mol. Sci. 2021;22:2283. doi: 10.3390/ijms22052283. - DOI - PMC
- PubMed
Kamat P.K., Kalani A., Rai S., Swarnkar S., Tota S., Nath C., Tyagi N.
Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of
Alzheimer’s Disease: Understanding the Therapeutics Strategies. Mol. Neurobiol.
2014;53:648–661. doi: 10.1007/s12035-014-9053-6. - DOI - PMC - PubMed
##
- - - - -- -- - -
--- --- - - --- ---