2024年8月10日 星期六

Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis; PY2020; Wayne State University;_WJD_2024-0810_IR95_IR96_

File name:
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis; PY2020; Wayne State University;_WJD_2024-0810_IR95_IR96_V001R01_

##

Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis; PY2020; Wayne State University;_WJD_2024-0810_IR95_IR96_V001R01_

##

Maturation of cytosolic Iron-sulfur proteins requires glutathione
細胞質液 裡面的 鐵硫蛋白 的成熟需要 穀胱甘肽
Maturation of cytosolic Iron-sulfur proteins requires glutathione (
細胞質液 裡面的 鐵硫蛋白 的成熟需要 穀胱甘肽)
細胞質液 裡面的 鐵硫蛋白 的成熟需要 穀胱甘肽 (Maturation of cytosolic Iron-sulfur proteins requires glutathione)

--- -  - --- -  - ---
2024-08-10
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis

Source or References (
資訊來源或是參考的資訊):
https://pubmed.ncbi.nlm.nih.gov/31672571/
Info cited on 2024-08-10-WD6 (
資訊引用於 中華民國113年西元2024810) by 湯偉晉 (WeiJin Tang)
#

- -  - - - -  - -

Biochim Biophys Acta Mol Cell Biol Lipids
. 2020 Feb;1865(2):158542. doi: 10.1016/j.bbalip.2019.158542. Epub 2019 Oct 28.
Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis

Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis

Loss of the mitochondrial lipid cardiolipin leads to decreased glutathione synthesis
Vinay A Patil 1, Yiran Li 1, Jiajia Ji 1, Miriam L Greenberg 2
Affiliations collapse
Affiliations
1Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
2Department of Biological Sciences, Wayne State University, Detroit, MI, USA. Electronic address: mgreenberg@wayne.edu.
PMID: 31672571 PMCID: PMC6980711 DOI: 10.1016/j.bbalip.2019.158542

Abstract
Previous studies demonstrated that loss of CL in the yeast mutant crd1Δ leads to perturbation of mitochondrial iron‑sulfur (FeS) cluster biogenesis, resulting in decreased activity of mitochondrial and cytosolic Fe-S-requiring enzymes, including aconitase and sulfite reductase. In the current study, we show that crd1Δ cells exhibit decreased levels of glutamate and cysteine and are deficient in the essential antioxidant, glutathione, a tripeptide of glutamate, cysteine, and glycine. Glutathione is the most abundant non-protein thiol essential for maintaining intracellular redox potential in almost all eukaryotes, including yeast. Consistent with glutathione deficiency, the growth defect of crd1Δ cells at elevated temperature was rescued by supplementation of glutathione or glutamate and cysteine. Sensitivity to the oxidants iron (FeSO4) and hydrogen peroxide (H2O2), was rescued by supplementation of glutathione. The decreased intracellular glutathione concentration in crd1Δ was restored by supplementation of glutamate and cysteine, but not by overexpressing YAP1, an activator of expression of glutathione biosynthetic enzymes. These findings show for the first time that CL plays a critical role in regulating intracellular glutathione metabolism.

Keywords: Barth syndrome; Cardiolipin; Fe-S cluster; Glutathione; Mitochondria; Reactive oxygen species (ROS).

Copyright © 2019 Elsevier B.V. All rights reserved.

PubMed Disclaimer

Conflict of interest statement
Declaration of competing interest

This article was prepared while Vinay A. Patil was employed at Wayne State University. The opinions expressed in this article are the author’s own and do not reflect the view of the Food and Drug Administration, the Department of Health and Human Services, or the United States Government.

Similar articles
Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis.
Patil VA, Fox JL, Gohil VM, Winge DR, Greenberg ML.
J Biol Chem. 2013 Jan 18;288(3):1696-705. doi: 10.1074/jbc.M112.428938. Epub 2012 Nov 28.
PMID: 23192348 Free PMC article.
Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function.
Raja V, Salsaa M, Joshi AS, Li Y, van Roermund CWT, Saadat N, Lazcano P, Schmidtke M, Hüttemann M, Gupta SV, Wanders RJA, Greenberg ML.
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 May;1864(5):654-661. doi: 10.1016/j.bbalip.2019.02.001. Epub 2019 Feb 5.
PMID: 30731133 Free PMC article.
Loss of Cardiolipin Leads to Perturbation of Acetyl-CoA Synthesis.
Raja V, Joshi AS, Li G, Maddipati KR, Greenberg ML.
J Biol Chem. 2017 Jan 20;292(3):1092-1102. doi: 10.1074/jbc.M116.753624. Epub 2016 Dec 9.
PMID: 27941023 Free PMC article.
Cardiolipin at the heart of stress response across kingdoms.
de Paepe R, Lemaire SD, Danon A.
Plant Signal Behav. 2014;9(9):e29228. doi: 10.4161/psb.29228.
PMID: 25763690 Free PMC article. Review.
New insights into the regulation of cardiolipin biosynthesis in yeast: implications for Barth syndrome.
Li G, Chen S, Thompson MN, Greenberg ML.
Biochim Biophys Acta. 2007 Mar;1771(3):432-41. doi: 10.1016/j.bbalip.2006.06.007. Epub 2006 Jul 8.
PMID: 16904369 Review.
See all similar articles
Cited by
Analysis of temporal metabolic rewiring for human respiratory syncytial virus infection by integrating metabolomics and proteomics.
Lu Y, Xu S, Sun H, Shan J, Shen C, Ji J, Lin L, Xu J, Peng L, Dai C, Xie T.
Metabolomics. 2023 Mar 29;19(4):30. doi: 10.1007/s11306-023-01991-2.
PMID: 36991292 Free PMC article.
Cardiolipin function in the yeast S. cerevisiae and the lessons learned for Barth syndrome.
Ji J, Greenberg ML.
J Inherit Metab Dis. 2022 Jan;45(1):60-71. doi: 10.1002/jimd.12447. Epub 2021 Oct 19.
PMID: 34626131 Free PMC article. Review.
References
Jiang F, Rizavi HS, Greenberg ML, Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or non-fermentable carbon sources, Mol. Microbiol 26 (1997) 481–491. - PubMed
Gohil VM, Thompson MN, Greenberg ML, Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae, J. Biol. Chem 280 (2005) 35410–35416. - PubMed
Barth PG, Wanders RJ, Vreken P, Janssen EA, Lam J, Baas F, X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060), J. Inherit. Metab. Dis 22 (1999) 555–567. - PubMed
Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D, A. novel X-linked gene G4.5. is responsible for Barth syndrome, Nat. Genet 12 (1996) 385–389. - PubMed
Clarke SL, Bowron A, Gonzalez IL, Groves SJ, Newbury-Ecob R, Clayton N, Martin RP, Tsai-Goodman B, Garratt V, Ashworth M, Bowen VM, McCurdy KR, Damin MK, Spencer CT, Toth MJ, Kelley RI, Steward CG, Barth syndrome, Orphanet J Rare Dis 8 (2013) 23. - PMC - PubMed
Sandlers Y, Mercier K, Pathmasiri W, Carlson J, McRitchie S, Sumner S, Vernon HJ, Metabolomics reveals new mechanisms for pathogenesis in Barth syndrome and introduces novel roles for cardiolipin in cellular function, PLoS One 11 (2016) e0151802. - PMC - PubMed
Koshkin V, Greenberg ML, Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria, Biochem. J 347 (Pt 3) (2000) 687–691. - PMC - PubMed
Zhang M, Mileykovskaya E, Dowhan W, Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane, J. Biol. Chem 277 (2002) 43553–43556. - PubMed
Pfeiffsser K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schagger H, Cardiolipin stabilizes respiratory chain supercomplexes, J. Biol. Chem 278 (2003) 52873–52880. - PubMed
Raja V, Joshi AS, Li G, Maddipati KR, Greenberg ML, Loss of cardiolipin leads to perturbation of acetyl-CoA synthesis, J. Biol. Chem 292 (2017) 1092–1102. - PMC - PubMed
Patil VA, Fox JL, Gohil VM, Winge DR, Greenberg ML, Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis, J. Biol. Chem 288 (2013) 1696–1705. - PMC - PubMed
Hill JE, Myers AM, Koerner TJ, Tzagoloff A, Yeast/E. coli shuttle vectors with multiple unique restriction sites, Yeast 2 (1986) 163–167. - PubMed
Zhong Q, Gohil VM, Ma L, Greenberg ML, Absence of cardiolipin results in temperature sensitivity, respiratory defects, and mitochondrial DNA instability independent of pet56, J. Biol. Chem 279 (2004) 32294–32300. - PubMed
Kaplan J, McVey Ward D, Crisp RJ, Philpott CC, Iron-dependent metabolic remodeling in S. cerevisiae, Biochim. Biophys. Acta 1763 (2006) 646–651. - PubMed
Lill R, Muhlenhoff U, Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases, Annu. Rev. Biochem 77 (2008) 669–700. - PubMed
Cupp JR, McAlister-Henn L, NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae, J. Biol. Chem 266 (1991) 22199–22205. - PubMed
Cupp JR, McAlister-Henn L, Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae, J. Biol. Chem 267 (1992) 16417–16423. - PubMed
Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS, Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1, J Biol Chem 269 (1994) 32592–32597. - PubMed
DeLuna A, Avendano A, Riego L, Gonzalez A, NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles, J. Biol. Chem 276 (2001) 43775–43783. - PubMed
Hansen J, Cherest H, Kielland-Brandt MC, Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH, J. Bacteriol 176 (1994) 6050–6058. - PMC - PubMed
Masselot M, De Robichon-Szulmajster H, Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants, Mol. Gen. Genet 139 (1975) 121–132. - PubMed
Masselot M, Surdin-Kerjan Y, Methionine biosynthesis in Saccharomyces cerevisiae. II. Gene-enzyme relationships in the sulfate assimilation pathway, Mol. Gen. Genet 154 (1977) 23–30. - PubMed
Ogur M, Coker L, Ogur S, Glutamate auxotrophs in Saccharomyces 1. I. The biochemical lesion in the glt-1 mutants-2, Biochem Biophys Res Commun 14 (1964) 193–197. - PubMed
Thomas D, Surdin-Kerjan Y, Metabolism of sulfur amino acids in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev 61 (1997) 503–532. - PMC - PubMed
Wen S, Zhang T, Tan T, Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae, Enzym. Microb. Technol 35 (2004) 501–507.
Cha JY, Park JC, Jeon BS, Lee YC, Cho YS, Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8, J. Microbiol 42 (2004) 51–55. - PubMed
Suzuki T, Yokoyama A, Tsuji T, Ikeshima E, Nakashima K, Ikushima S, Kobayashi C, Yoshida S, Identification and characterization of genes involved in glutathione production in yeast, J. Biosci. Bioeng 112 (2011) 107–113. - PubMed
Inoue Y, Sugiyama K, Izawa S, Kimura A, Molecular identification of glutathione synthetase (GSH2) gene from Saccharomyces cerevisiae, Biochim. Biophys. Acta 1395 (1998) 315–320. - PubMed
Ohtake Y, Yabuuchi S, Molecular cloning of the gamma-glutamylcysteine synthetase gene of Saccharomyces cerevisiae, Yeast 7 (1991) 953–961. - PubMed
Grant CM, MacIver FH, Dawes IW, Glutathione is an essential metabolite required for resistance to oxidative stress in the yeastSaccharomyces cerevisiae, Curr. Genet 29 (1996) 511–515. - PubMed
Jamieson DJ, Oxidative stress responses of the yeast Saccharomyces cerevisiae, Yeast 14 (1998) 1511–1527. - PubMed
Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, Toledano MB, Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast, J. Biol. Chem 274 (1999) 16040–16046. - PubMed
Sugiyama K, Izawa S, Inoue Y, The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae, J. Biol. Chem 275 (2000) 15535–15540. - PubMed
Wheeler GL, Trotter EW, Dawes IW, Grant CM, Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors, J. Biol. Chem 278 (2003) 49920–49928. - PubMed
Wu AL, Moye-Rowley WS, GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation, Mol. Cell. Biol 14 (1994) 5832–5839. - PMC - PubMed
Kumar C, Igbaria A, D’Autreaux B, Planson AG, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB, Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control, EMBO J 30 (2011) 2044–2056. - PMC - PubMed
Meister A, Glutathione metabolism and its selective modification, J. Biol. Chem 263 (1988) 17205–17208. - PubMed
Penninckx MJ, An overview on glutathione in Saccharomyces versus non-conventional yeasts, FEMS Yeast Res 2 (2002) 295–305. - PubMed
Jamieson DJJY, Oxidative Stress Responses of the Yeast Saccharomyces cerevisiae, 14 (1998), pp. 1511–1527. - PubMed
Pierik AJ, Netz DJ, Lill R, Analysis of iron-sulfur protein maturation in eukaryotes, Nat. Protoc 4 (2009) 753–766. - PubMed
Alfafara C, Miura K, Shimizu H, Shioya S, Suga K.-i., Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol 37 (1992) 141–146.
Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G, Maturation of cytosolic Iron-sulfur proteins requires glutathione, J. Biol. Chem 277 (2002) 26944–26949. - PubMed
Lee JC, Straffon MJ, Jang TY, Higgins VJ, Grant CM, Dawes IW, The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain, FEMS Yeast Res 1 (2001) 57–65. - PubMed
Chen S, He Q, Greenberg ML, Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth, Mol. Microbiol 68 (2008) 1061–1072. - PMC - PubMed
Moreno-Cermeno A, Obis E, Belli G, Cabiscol E, Ros J, Tamarit J, Frataxin depletion in yeast triggers up-regulation of iron transport systems before affecting iron-sulfur enzyme activities, J. Biol. Chem 285 (2010) 41653–41664. - PMC - PubMed
Vasquez-Vivar J, Kalyanaraman B, Kennedy MC, Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation, The Journal of biological chemistry 275 (2000) 14064–14069. - PubMed
Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML, Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae, J. Biol. Chem 287 (2012) 17589–17597. - PMC - PubMed
Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M, Guan XL, Mooga VP, Stroud DA, Kulkarni G, Wenk MR, Rehling P, Meisinger C, Ryan MT, Wiedemann N, Greenberg ML, Pfanner N, Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome, Curr. Biol 19 (2009) 2133–2139. - PMC - PubMed
Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M, Pfanner N, Greenberg ML, Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function, J. Biol. Chem 275 (2000) 22387–22394. - PubMed
Johnston J, Kelley RI, Feigenbaum A, Cox GF, Iyer GS, Funanage VL, Proujansky R, Mutation characterization and genotype-phenotype correlation in Barth syndrome, Am. J. Hum. Genet 61 (1997) 1053–1058. - PMC - PubMed
Raja V, Salsaa M, Joshi AS, Li Y, van Roermund CWT, Saadat N, Lazcano P, Schmidtke M, Huttemann M, Gupta SV, Wanders RJA, Greenberg ML, Cardiolipin-deficient cells depend on anaplerotic pathways to ameliorate defective TCA cycle function, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864 (2019) 654–661. - PMC - PubMed

- - - - -- -- - -
--- --- -   - --- ---